
FLUID LIMIT FOR A GENETIC MUTATION MODEL

CARLOS BAJO CARABALLO1, ILIE GRIGORESCU1,2

1 Department of Mathematics, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33124-4250
2 email: igrigore@math.miami.edu.

1



Key words and phases: Fluid limit, Shepp Urn, high frequency scaling, genetic fixation

model, stability

Primary: 60K10; Secondary: 34K20, 92D30, 92D25

Abstract. We trace the time evolution of the number Ut of non-deleterious mutations,

present in a gene modeled by a word of length L and DNA fragments by characters

labeled 0, 1, . . . , N . For simplification, deleterious mutations are codified as equal to 0.

The discrete case studied in [9] is a modified version of the Pólya urn, where the two types

are exactly the zeros and non-zeros. A random continuous time binary mutation model,

where the probability of creating a deleterious mutation is 1/N , while the probability

of recovery γ(L−1ULt), γ continuous, is studied under a Eulerian scaling uL
t = L−1ULt,

L → ∞. The fluid limit ut, emerging due to the high-frequency scale of mutations, is

the solution of a deterministic generalized logistic equation. The power law γ(u) = cua

captures important features in both genetical and epidemiological interpretations, with c

being the intensity of the intervention, a the strength/virulence of the disease, and 1/N

the decay rate/infectiousness. Among other applications, we obtain a quantitative study

of ∆T , the maximal interval between tests. Several stochastic optimization problems,

including a generalization of the Shepp urn [13] are proposed.
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1. Introduction

In this paper we investigate a mathematical model of a mutations occurring in a gene

within a cell. Genes undergo mutations randomly, with the possibility of reaching special

configurations; some are beneficial and mark a step in the evolutionary process, but some

are deleterious - as would be the case in cancer formation and inherited genetic disorders

such as phenylketonuria, cystic fibrosis, and color-blindness, just to mention a few. The

idea of random mutations explaining cancer cell dynamics is subject to a vast literature,

e.g. [7] and the references therein, but even more so, appears verified by recent experi-

mental breakthroughs [16] and [11]. Quoting the authors, these show that “this ‘bad luck’

component explains a far greater number of cancer types than do hereditary and environ-

mental factors”. Here “luck” means randomness as opposed to causation. It remains open

to biologists to make such determinations. Mathematically, we are much closer in scope to

the genetic model from [17], [9], and more recently [5].

More specifically, we propose a model where the incidence of a certain character (delete-

rious, denoted by zero) is proportional to the pathology of the cell. When the the number of

non-deleterious Ut drops below a certain threshold α, the disease becomes detectable; when

reaching another threshold u1 < α, it becomes irreversible, and, in between, we obtain a

time window for possible intervention (treatment). This is represented by the probability

of recovery γ, a function of the current state of the cell. The system, while simple in biolog-

ical sense, allows putting in evidence a clear interplay between parameters: the probability

of deleterious mutation 1/N , N ≥ 1; the virulence of the disease through an exponent

a > 0; and the treatment, through a constant c ∈ [0, 1], all present in γ. In addition, an

interpretation of the recommended time interval for testing ∆T is provided.

In discrete time, the model can be seen as an urn model with the two types (Ut, L−Ut).
The first type (which determines the second) moves down by one unit with probability

1−Ut/L and up by γ(Ut/L). We note that for γ(x) = x the dynamcs is an urn model with

a power law probability of mutation. Its connection to optimal stopping is outlined in the

modified Shepp’s urn [13] proposed in Section 5.

Scaling is essential, observing a random behavior on the microscopic scale 1/L, when

L <∞ is fixed, seen as a moderate frequency of the motion. In the macroscopic scale L→
∞, the profile becomes deterministic (Theorem 1), as the mutations have high frequency.

The paper is organized as follows. Section 2 will describe the exact mathematical model,

including the fluid limit contained in Theorem 1, which is the main result. Its proof is

in Section 3. Section 4 is the most important from the point of view of the applications.

We distinguish Subsection 4.4, defining the time window of intervention and the discussion

from Subsection 4.7 where we give a comprehensive interpretation of the model in the most

relevant case of two nonzero equilibria (a > 1). A special place is occupied by Section
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5, making the connection to stochastic optimization and formulating two optimal stopping

problems. Finally, Sections 6 and 7 prove the detailed stability results for a > 1, respectively

0 ≤ a < 1 in the power law model γ(u) = cua.

2. The scaling model

In this paper, we build upon a genetic model introduced in [17] aimed at estimating the

so called time for evolution as a function of the length of the gene (word). The case was to

prove that random mutations can lock in a certain configuration in logarithmic time, i.e.

an achievable scale.

The model is extended in [9] by allowing a small probability of mutation after reaching

the preferred evolutionary state. In the present work, the evolutionary biology aspect is

not pursued, instead we shall apply the same mathematical construction to analyze cell

pathology and possible recovery, as well as the parallel epidemiological model.

Consider the set of alleles of length L with N possible types, which are determined by

sequences of nucleotides, here interpreted as characters. Mathematically, this set can be

described as the set of words of length L formed with letters from an alphabet of size N ,

both positive integers. We’ll represent the alphabet as ZN = {0, 1, ..., N − 1}, as N ≥ 1

and the set of words of length L ≥ 1 using the alphabet by S = ZLN . This will be the state

space of a pure jump continuous time Markov process (Zt)t≥0.

For convenience, we chose 0 ∈ ZN (zero) as the singular value of interest. The evolution

depends on the number of letters equal to this special value.

Let Zjt ∈ ZN denote the components, 1 ≤ j ≤ L of the configuration at time t ≥ 0

of the vector-valued Zt = (Z1
t , ..., Z

L
t ). In the model, the standard construction of pure

jump processes is done via exponential holding times (i.e. Poissonization) and a transition

matrix (2.1)-(2.3) prescribing how the process evolves at jump times τ .

Assume that 0 ≤ g(Z) ≤ 1 is a measurable function depending on the configuration

Z ∈ S. In the model, it will represent the rate of recovery, i.e. the probability to escape

the state 0 (deleterious). A Poisson clock of intensity λ = 1 triggers a jump from one

configuration of Z ∈ S to another, performed as follows. We pick randomly one component

Zj , 1 ≤ j ≤ L, of the vector Z, with probability 1/L, and then:

If Zjτ− 6= 0, Zj changes uniformly to any value, including 0,

(2.1) Zjτ = k with probability
1

N
, for all k ∈ ZN ,
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while if Zjτ− = 0, then

Zjτ = k with probability
g(Zτ−)

N − 1
, when k 6= 0 ,(2.2)

Zjτ = k with probability 1− g(Zτ−) , when k = 0 .(2.3)

We notice that if g(·) is a constant, the components are independent. In [17], the state

equal to the zero vector 0 = (0, ..., 0) ∈ S models a preferred configuration of the random

evolutionary model, the only one where fixation is possible, and the expected time to reach

it is calculated with an exact asymptotic formula as L→∞.

Let’s denote by U = U(Z) the number of non-zero components of Z ∈ S. In addition,

it will be assumed throughout the paper that the rate of recovery has the special form

(2.4) g(Z) = γ(
U

L
) , Z ∈ S ,

where γ : [0, 1]→ [0, 1] is continuous.

With this definition Ut, t ≥ 0, corresponding to Zt, is also Markov process on the space

{0, 1, ..., L}. In general, a function Z → U(Z) on the state space does not determine a new

Markov process, here possible only due to the special form of g(Z). The presence of the

factor L in (2.4) indicates dependence on the empirical measure (relative frequency) Ut/L

of the non-zero states.

To obtain a quantity behaving well as L→∞, in addition to dividing U by L, time will

be sped up by the same factor t→ Lt, in what is known as the Eulerian scaling, to obtain

(2.5) uLt :=
ULt
L

=
1

L

L∑
j=1

1ZN\{0}(Z
j
Lt) , t ≥ 0 .

Theorem 1 is our first result. It proves that uLt converges, as L→∞, to a deterministic

trajectory defined by the solution of an ODE. It is the continuous time analogue of Theorem

3 in [9]. In that paper, the scaled process is a deterministic discrete time dynamical system.

In Proposition 1 we shall show that, based on the construction of (Zt), now with a

Poisson clock of intensity λ = L > 0 (as opposed to λ = 1), the derived process (uLt ) has

the infinitesimal generator

ALf(u) = L

[
u

N

(
f(u− 1

L
)− f(u)

)
+ γ(u)(1− u)

(
f(u+

1

L
)− f(u)

)]
,(2.6)

defined on functions f ∈ C([0, 1]).

When γ(0) = 0, which may occur when Ut = 0, the process will never leave the state

0. Let ξ = inf{t > 0 |uLt = 0} be the time of extinction. This will not play a significant

role in this paper. First, on a technical level, extinction only happens when the intensity
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u/L vanishes, which does not require boundary conditions on f . Second, in applications

(Corollary 1) like the power law for γ, the solution exists for all times after scaling.

Eq. (2.5) points to a mean-field dependence, leading to a Law of Large Numbers at the

level of the random trajectories. Such a scaling limit is known as a fluid limit. The empirical

measure of the zero states, here simply Ut/L, converges in probability to the deterministic

solution of an ode (2.7).

With γ(u) defined in (2.4), H ∈ C([0, 1]) will denote the vector field and its associated

initial value problem for ū ∈ [0, 1]

(2.7) H(u) := − u
N

+ γ(u)(1− u) ,
du

dt
= H(u) , u(0) = ū .

The solution is denoted (ut). The subscript notation for time t ≥ 0 is motivated by

consistency with the notation of the stochastic process uLt and should not be confused with

the derivative.

Theorem 1. Assume that γ = γ(u), 0 ≤ u ≤ 1 from (2.4) is continuous, uL0 = U0/L

converges in probability to the deterministic state ū ∈ [0, 1] and (2.7) has a unique solution.

Then, the laws of the of processes (uLt ), indexed by L ≥ 1, form a tight family in the

Skorohod space and any limit point is a delta function concentrated on the deterministic

solution (ut) of (2.7). It follows that (uLt ) converges in probability to (ut).

Remark. Theorem 1 is proven in Section 3. In fact, we prove a slightly stronger result.

The convergence takes place in probability, uniformly on finite time intervals.

Corollary 1. When γ(u) = cua with c, a ≥ 0 and ū ∈ (0, 1], the conditions of Theorem

1 are met. In particular, equation (2.7) has a unique solution (ut) with maximal existence

interval [0,∞) satisfying ut ∈ (0, 1), t > 0.

Remark. When c > 0, a ∈ (0, 1), ū = 0 the stationary solution is not unique, in general.

Proof. In all cases, γ ∈ C1((0,∞)), thus H ∈ C1((0,∞)). For ū ∈ (0, 1] ⊆ (0,∞), the

initial value problem has a unique solution (ut) with continuous derivative on the maximal

interval [0, t′) starting from any ū ∈ (0, 1]. We have to prove that t′ = +∞ and the solutions

remain in (0, 1) at all positive times. First, we show the existence of the upper and lower

bounds.

Since γ(u) ∈ [0, 1], the inequality − u
N ≤ H(u) ≤ 1 − (1 + 1

N )u holds. First it shows

that the derivative of (ut − N
1+N )e(1+ 1

N
)t is negative. Its value at t = 0 is an upper bound.

Second, for a lower bound, we check the derivative of ute
t
N . Putting them together, the

solution satisfies

0 < ūe−
t
N ≤ ut ≤

N

N + 1
(1− e−(1+ 1

N
)t) + ūe−(1+ 1

N
)t < max{ N

1 +N
, ū} = u+ ≤ 1 , t > 0
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proving that ut remains in (0, 1) at all times t ∈ (0, t′) and in (0, 1] at t ∈ [0, t′). To show

that t′ = +∞, it is sufficient that the solution remains in a compact subset of the open set

D ⊆ R, provided that H ∈ C1(D) ([12], Corollary 2, Section 2.4).

If either c = 0 or c > 0 and a ∈ {0} ∪ [1,∞), then D = R and the bound ut ∈ (0, u+] ⊆
[0, u+] shows that t′ = +∞.

The remaining case is c > 0 and a ∈ (0, 1). Here D = (0,∞) and u0 = 0 is an equilibrium

point. Writing H(u) = cu(− 1
Nc + ua−1(1− u)), we notice that the function in parenthesis

is strictly decreasing with value +∞ as u → 0 and − 1
Nc < 0 at u = 1. Then, there

exists exactly one more equilibrium point u2 ∈ (0, 1) (the notation is consistent with that

in Proposition 6, where the case is treated in more detail). Moreover, u2 is stable. In

particular H(u) > 0 for u ∈ (0, u2). A solution starting at ū ∈ (0, u2) is increasing and

stays in the interval [ū, u2]. A solution starting at ū ≥ u2 stays in [u2, u+], since u2 is an

interior point of D = (0,∞). In both cases, we derive that t′ = +∞. �

3. Proof of Theorem 1

We start with the derivation of the formula for the generator (2.6).

Proposition 1. The process (uLt ), t ≥ 0 from (2.5) is a pure jump Markov process and has

generator equal to AL from eq. (2.6).

Proof. The process described by (2.1)-(2.3) is a pure jump process with generator

(3.1) ÃLF (Z) =
1

L

L∑
j=1

[( 1

N

N∑
k=0

(F (Zj→k)− F (Z))
)
1ZN\{0}(Z

j)

(3.2) +
( g(Z)

N − 1

N−1∑
k=1

(F (Zj→k)− F (Z)) + (1− g(Z))(F (Zj→0)− F (Z))
)
1{0}(Z

j)

]
,

where F ∈ Cc(R), Z ∈ ZLN is a configuration of the process, i.e. an element in the state

space. For j ∈ {1, . . . , L} and k ∈ {0, 1, . . . , N − 1}, we denote Zj the j-th component of

Z and Zj→k is the configuration obtained from Z by replacing the component j with the

number k. Denote uL = U/L - see (2.5). More precisely uL(Z) = 1
L

∑N
j=1 1ZN\{0}(Z

j) is a

deterministic function of the configuration Z.

The process uLt is obtained by

(i) speeding up time by a factor of L creating the process t→ ZLt and

(ii) mapping Z → uL(Z).

Assume now g(Z) = γ(uL). Pick F (Z) := f ◦ uL(Z) for f ∈ C([0, 1]). Then, the action

of LÃL (notice the pre-factor L from the change of speed) on f(uL) will be of two kinds.

If component j is chosen (with probability 1/L) and Zj 6= 0, as shown in (3.1), then uL

can only decrease to uL − 1/L, which will happen when it it changes to the value k = 0,
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with probability 1/N . This will be repeated for all j with Zj 6= 0, which adds up to exactly

U = LuL. This gives the first term of AL from (2.6).

If component j is chosen (with probability 1/L) and Zj = 0, as shown in (3.2), then uL

can only increase to uL + 1/L in the first, respectively remain the same in the second term

of (3.2). So the increase happens with probability (N − 1)× γ(uL)
N−1 = γ(uL) for all j when

Zj = 0, i.e. L− U = L(1− uL) times. This gives the second term of AL from (2.6).

In addition, this calculation proves that (uLt ), t ≥ 0 is a pure jump, finite state space

Markov process. �

The following general definitions are necessary to state and prove the fluid limit of Theo-

rem 1. A Polish space is a separable, complete metric space; here it will be a normed linear

space (X, || · ||), specifically R with the Euclidean norm.

Pure jump processes, and a large class of Feller processes can be canonically constructed

on the Skorohod space D([0,∞), X) of right-continuous with left-limit paths (rcll, also

known as càdlàg). Tightness is the notion of pre-compactness of probability laws defined by

Prokhorov’s theorem, meanwhile C-tightness refers to the fact that the family of processes

indexed by N > 0 is not only tight as a family on the Skorohod space with the usual J1

Skorohod topology, but in addition, any limit point is supported on the subset of continuous

paths. For more details we refer the reader to [14], Ch. VI, p. 324.

Definition 1. A sequence of processes (Y L
· )L>0 on a Polish space (X, || · ||) with right-

continuous with left limits paths (in the Skorohod space) is C-tight ( i.e. the probability

laws are a tight family), if for any T ≥ 0

(i) lim
M→∞

lim sup
L→∞

P
(
||Y L

T || > M
)

= 0 and(3.3)

(ii) ∀ ε > 0 lim
δ→0

lim sup
L→∞

P
(

sup
t,t′∈[0,T ],|t′−t|<δ

||Y L
t′ − Y L

t || > ε
)

= 0 .(3.4)

Definition 2. A sequence of processes (Y L
· )N>0 on a Polish space (X, || · ||) converges in

probability to (Y·), uniformly in finite time, if for any T > 0, the process t → (Y L
t )t≥0

satisfies

∀ε > 0 lim
L→∞

P
(

sup
t∈[0,T ]

||Y L
t − Yt|| > ε

)
= 0 .(3.5)

Proposition 2. The processes (uLt )t≥0, indexed by L ∈ N, have a C-tight family of

probability laws.

Proof. Since uLt ∈ [0, 1] by construction, we adopt test functions f ∈ C2([0, 1]) and consider

their extensions to the space C2
c (R). First, we write the action of the generator (2.6) of the
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underlying pure jump process (uLt ) . We obtain the martingale

ML,f
t = f(uLt )− f(uL0 )−

∫ t

0
ALf(uLs ) ds

with quadratic variation

(3.6) 〈ML,f 〉t =

∫ t

0
ALf2(uLs )− 2f(uLs )ALf(uLs ) ds .

More precisely

〈ML,f 〉t =

∫ t

0
L
[uLs
N

(f(uLs −
1

L
)− f(uLs ))2 + γ(uLs )(1− uLs )(f(uLs +

1

L
)− f(uLs ))2

]
ds .

After writing the Taylor formula with remainder of order two, there exist two constants

c(f), c1(f) depending only on f such that

(3.7) ALf(u) = H(u)f ′(u) + c(f, u, L) , |c(f, u, L)| ≤ c(f)L−1 ,

and

(3.8) 〈ML,f 〉t ≤ c1(f)L−1 .

For the last bound, the quadratic variation comprises only jumps of size 1/L; these are

squared and sum up to a total of O(1/L), uniformly in time and u ∈ [0, 1], since the bounds

are depending only on the derivatives of f .

We now can show that for any test function f defined at the beginning of this proof,

Y L
t = f(uLt ) is C-tight. Condition (i) in (3.3)is trivial because uLt ∈ [0, 1] and f has compact

support without further restrictions necessary. Condition (ii) in (3.4) is implied by the fact

that |ALf(uLs )| is bounded by 1 + c(f)/L.

To obtain (3.4) for the martingale ML,f
t , we apply the Doob’s L2-norm maximal in-

equality, taking without loss of generality 0 ≤ t ≤ t′ ≤ T . First, note that ML,f
0 = 0.

Then

P
(

sup
t,t′∈[0,T ],|t′−t|<δ

|ML,f
t′ −M

L,f
t | > ε

)
≤ 2P

(
sup
t∈[0,T ]

|ML,f
t | >

ε

2

)
≤

(3.9)
8

ε2
E
[
( sup
t∈[0,T ]

ML,f
t )2

]
≤ 32

ε2
E
[
(ML,f

T )2
]

=
32

ε2
E
[
〈ML,f 〉T

]
≤ 32c1(f)

ε2L
.

The last inequality is a direct estimate from the quadratic variation (3.8). As L→∞, the

estimate (3.4) is satisfied independently of δ. We have shown that the martingale is tight,

and the integral term
∫ t

0 A
Lf(uLs )ds are C-tight, hence f(uLt ) is C-tight. Choosing f(u) = u

on a neighborhood of [0, 1], we obtain that (uLt )t∈[0,T ], indexed by L, is C-tight. �

Denote (η(t))t≥0, written simply as η·, a path in the Skorohod space D([0,∞);R). Let

χ ∈ C∞c (R be a smooth version of the indicator function of the interval [0, 1]. Pick T > 0
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arbitrary but momentarily fixed. We define the functional Ψ : D([0, T ];R)→ R

(3.10) Ψ(η(·)) := sup
t∈[0,T ]

∣∣∣f(η(t))− f(ū)−
∫ t

0
H(ηs)f

′(ηs)χ(η(s)) ds
∣∣∣ .

To explain the presence of the factor χ(η(s)) we note that η(s) may assume arbitrary

large values, while we are interested in a a bounded functional Ψ. On the other hand, the

actual process (uLs )s≥0 is naturally bounded by one, and the factor χ(uLs ) will be simply

equal to one once we apply the functional to the process, as seen below.

Proposition 2 proved that the probability laws of the processes (uLt )t≥0, indexed by L

and defined on the common space D([0,∞);R), form a C − tight family. The family will

have at least one limit law, a probability measure on D([0,∞);R). Let (ut)t≥0 be a process

having the limit law. Then limk→∞(uLk
t )t≥0 ⇒ (ut)t≥0 (in distribution) over a sequence

(Lk)k≥1. To simplify notation we shall omit the subscript k.

We shall prove that such limit law is unique, implying the sequence (uLt )t≥0 converges in

distribution. Moreover, the limit law will be a delta measure concentrated on the trajectory

given by the solution (ut)t≥0 of (2.7), proving that the convergence is, in fact, in probability,

concluding the proof of Theorem 1.

First, the limit law is concentrated on C([0, T ];R) (C-tightness), i.e. the limit point

t → ut is a.s. continuous. We claim that Ψ is a bounded, continuous functional on the

Skorohod space D([0, T ];R). Boundedness is immediate form the definition of the functions

f , χ and H. The supremum supt∈[0,T ] |η(t)| is a continuous functional on the full interval

[0, T ] of D([0, T ];R). It is then sufficient to prove that the functional over which we take

the supremum in the formula of Ψ is a continuous functional itself. The functional has a

first term, equal to f(η(·)), which is continuous in η(·) ∈ D([0, T ];R) because as long as the

limit point is (uniformly) continuous on [0, T ], convergence in the Skorohod topology implies

uniform convergence, and a second term, equal to a time integral, evidently continuous.

Next, Portmanteau’s Theorem implies that, over the subsequence converging in distri-

bution to u· (we keep the same notation L→∞),

lim
L→∞

E
[
Ψ(uL· )

]
= E

[
Ψ(u·)

]
.

We want to show that the limit on the left hand side is actually equal to zero. For this

we refer again to the martingale (3.6) and see that

Ψ(uL· ) ≤ sup
t∈[0,T ]

∣∣∣ ∫ t

0

[
H(uLs )f ′(uLs )χ(uLs )−AL(uLs )

]
ds
∣∣∣+ sup

t∈[0,T ]

∣∣∣ML,f
t

∣∣∣ .
The first term contains χ(uLs ) ≡ 1 because 0 ≤ uLs ≤ 1 by construction. The difference

under the integral is bounded above by c(f)/L from (3.7), making the first term on the
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right hand side of the inequality bounded by c(f)T/L. Letting L → ∞, the first term

vanishes.

The second term uses the martingale estimate (3.9) and vanishes as L→∞.

We showed that E[Ψ(u·)] = 0 under the limit law. We still have a factor χ(us) under

the time integral. Let φ ∈ C∞c (R). Then (η(t))t∈[0,T ] → φ(supt∈[0,T ] ηt) is also a bounded

C-functional. It follows by Portmanteau’s Theorem and optimizing over φ to approximate

1(1,∞)(u) that P (supt∈[0,T ] ut > 1) = 0. Similarly we obtain P (inft∈[0,T ] ut < 0) = 0, and

finally that P (ut ∈ [0, 1] , t ∈ [0, T ]) = 1. This allows us to omit χ in the formula of Ψ

under the limit law.

Then, with probability one, the (possibly random) continuous process u· satisfies

sup
t∈[0,T ]

∣∣∣f(u(t))− f(ū)−
∫ t

0
H(us)f

′(us) ds
∣∣∣ = 0 .

This identity is valid for any f ∈ C2
c (R); in particular, since 0 ≤ u ≤ 1, we can take

f(u) = u on a neighborhood of [0, 1]. This shows that any possible continuous limit solves

ut − ū−
∫ t

0
H(us) ds = 0 ,

which is exactly (2.7) in integral form. The function H is continuous, so is u·, thus the

integrand is continuous, implying that ut is differentiable in classical sense. We proved that

any limit point solves the ode (2.7). Moreover, u′ = H(u), u0 = ū has a unique solution

by hypothesis. We proved that any limit law is supported on only one possible trajectory,

equal to the unique solution to the initial value problem (2.7). Finally, the convergence takes

place in distribution, to a delta function concentrated on the unique solution of the ode.

Convergence in distribution to a delta measure is equivalent to convergence in probability.

Because all along the convergence was uniform in time over [0, T ], T fixed but arbitrary,

we concluded the proof of Definition 2, and hence of the theorem.

4. Applications

Both the random process Ut (macroscopic scale) and its deterministic scaling ut (micro-

scopic scale) from eq. (2.7) can be regarded as population dynamics models. Two main

setups are proposed: (i) the cancer development model and (ii) the epidemic model. In (i),

the number Ut, calculated out of the total population L, is understood as the set of alleles

in non-deleterious states; in (ii) it is the non-infected population. After scaling, asymp-

totically as L → ∞, the trajectory ut is the averaged value, consistent with a law of large

numbers for empirical measures, calculated out of a normalized population of size one.

Equation (2.7) is valid for a general continuous function γ(u). Since it is an autonomous

equation, we are interested in stability about the equilibria u, given by the solutions of
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H(u) = 0. In both micro - and macroscopic models, we are still interested in the relation

between the solution and the sensitive state 0 (zero). For this reason, we shall adopt models

when γ(0) = 0, so that u = 0 is an equilibrium point. In general, since the initial value ū

is non-negative and the equation is autonomous, the solution ut remains non-negative.

In a reasonable model, the zero state should be absorbing, as the intrinsic condition is

that recovery depends with positive correlation on the non-deleterious/infected population

ut. To satisfy that assumption, the mathematical model proposed, for both cancer and

epidemic examples, will be a power law for the probability of recovery

(4.1) γ(u) = cua , for 0 ≤ c ≤ 1 , a ≥ 0 .

The framework is as follows. In the natural state, the population follows (2.7) with c = 0

(i.e: γ ≡ 0). This is the pre-intervention level. It is assumed hereby that an exponential rate

of aging/contamination (cancer and epidemic, respectively) drives the healthy population

down, towards eventual extinction, in the absence of treatment, here represented by γ(u).

An empirical level u = α ∈ (0, 1) designates the detection threshold. It is only as soon as

u drops below α that tests or symptoms make the disease detectable. At this point, an

intervention takes place, with a specific probability of recovery γ(u) (4.1) depending on the

”healthy” proportion of the population u; the strength of the treatment c; and the intensity

or virulence of the disease a.

A couple of observations are in order to motivate the definition of γ. First, notice that

this function is increasing in u meaning that, for bigger u our probability of recovery is

greater, consistent with u being the healthy proportion of the population. Also, if we fix

u ∈ (0, 1) and consider a → ∞, then the function γ(u) = cua → 0, thus the probability of

recovery reduces as the intensity of the disease increases.

Equation (2.7) depends on the logistic factor γ(u). Since g(Z) from eq. (2.4) belongs to

[0, 1] macroscopically (before letting L→∞), it is the case that γ(u) = cua ∈ [0, 1] as well.

Thus, to avoid technical complications, we adopt c ∈ [0, 1] while u ∈ [0, 1]. As explained in

the previous paragraph, for a ≥ 0, the power function is increasing in u but decreasing in

a, again consistent with the model interpretation.

The particular cases a = 0 and a = 1 are studied in [9] in a discrete time setting. The

continuous time case is briefly discussed in Subsections 4.5 (a = 0) and 7.1, Proposition 5

(a = 1).

4.1. The intrinsic parameters. These are parameters intrinsic imbedded in the recovery

probability function γ(u), i.e. a, C and N ; they are defined as opposed to the extrinsic

parameters described below. In the cancer growth model setup, 1/N is the probability of

a deleterious mutation, a feature of aging, and intrinsic to the cell; c is the effectiveness

of the intervention (treatment); a is the cancer type, or aggressiveness. In the epidemic
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model, 1/N is the contagiousness of the disease (e.g. probability to contract the virus); c

is the strength of a treatment of vaccine, and a is the virulence of the disease.

4.2. The extrinsic parameters. As opposed to the parameters defining the disease, these

parameters are set independently. We postulate two values α, β ∈ [0, 1], where u = α is the

detectability level and u = β is the quality of life, a satisfactory health threshold, especially

in the cancer setting. In the epidemic model it is the containment level, at which the

population is considered out of an epidemic state. It is natural to consider α < β. The case

α ≥ β is practically trivial and prophylactic care would prevail, as it allows apriori early

detection.

4.3. The equilibrium values. All cases in the power law model have at least one stable

equilibrium in the interval [0, 1). If c = 0, then u0 = 0 is the only equilibrium value

(Subsection 4.4). If c > 0, then

(i) If a = 0, there exists only one equilibrium value u2 (Newton’s equation, Subsection

4.5);

(ii) If a > 1, the number of equilibrium points of the system (2.7) will depend on the

parameter a, varying from only one equilibria for large a (fig. 1) to three (fig. 3), below a

critical point where there are exactly two (fig. 2). In this case the point u0 = 0 is always a

stable equilibrium, in the sense that H(u) < 0 for u near zero. In the case of the presence

of just another non zero-equilibrium point u1, this will be half-stable. Finally, the case of

three points 0 = u0 < u1 < u2 < 1, will exhibit u1 as unstable and u2 as stable - see Section

6.

(iii) If 0 < a ≤ 1, there exist two equilibrium values 0 = u0 = u1 < u2 < 1, where u0 is

unstable and u2 is stable - see Section 7.

4.4. Natural State of the System c = 0. A natural state of the system is when there is

no intervention, i.e. c = 0. In this case, the only dynamics is due to aging u(t) = u(0)e−
1
N
t

determined by the exponential rate of decay 1/N , with unique stable equilibrium at u0 = 0

(see section 1.1 in [8]).

Let u1 be the unstable equilibrium, where u1 > 0 for a > 1 and u1 = u0 = 0 when

a ∈ (0, 1]. The simple but important intervention window ∆T between reaching α and u1

is defined by

(4.2) ∆T = Tu1 − Tα = −N ln(
u1

α
) ,

noticing that ∆T = +∞ when u1 = 0. This is important because it prescribes the time

between tests or checkups, obviously meaningful only when a > 1, which corresponds to a

more aggressive disease.
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Remark. The equilibrium value u1 is a function of Nc and a, and thus ∆T is a function

depending on the dynamical system (2.7) and not just on the trivial exponential decay.

This time for detection successfully describes the interplay between the equilibrium point

u1 and the threshold α. Notice that if u1 > α the time of intervention is negative, which

means that the detection was late.

We now start analyzing the power law model (4.1) case by case.

4.5. Case c > 0, a = 0. This borderline case, when a = 0 and c > 0, the solution is the so

called Newton’s equation (usually of temperature) approaching its unique stable nonzero

equilibrium u2 = (1 + 1
Nc)
−1 exponentially fast. In our interpretation, this permits an

intervention since u2 > 0; yet, it is successful only if u2 ≥ β as c ↑ 1.

4.6. Case c > 0, a > 0. This is by far the most important case and is treated in detail in

Sections 6 (a > 1), respectively 7 (0 < a ≤ 1). We recall that the equilibrium points of the

system (2.7) are given by the zeroes of the function in (2.7). With the power law,

(4.3) H(u) = cuf(u) , f(u) := ua−1(1− u)− 1

Nc
, u ∈ [0, 1] .

Let u be an equilibrium point of the dynamical system (2.7), then H(u) = 0 which

implies that either u = 0 or, for the non-zero equilibrium points of (2.7), are the solutions

u > 0 of f(u) = 0. It will be shown that there are at most two 0 < u1 ≤ u2 < 1 such

solutions.

The analysis of the stability of the equilibrium points of (2.7) will require to determine

the sign of H ′ (see, in Section 2.4, p 24 in [15]) or, because we are in dimension one,

equivalently, just the sign of H. We write H and its derivative H ′ in terms of f , and focus

essentially on the analysis of the function f . Any result that we obtain for the function f

will easily imply the corresponding consequence for the functions H, H ′ via the formulas

(4.4) H(u) = cuf(u) , H ′(u) = c
(
f(u) + uf ′(u)

)
.

Without loss of generality, we assume c > 0 and a > 0, since the analysis regards the

system after intervention (c > 0) and a = 0 is trivial because the recovery probability γ(u)

does not depend on u. Then 0 = u0 ≤ u1 < u2 < 1.

4.7. Discussion and interpretation of the results. The most complex case is studied in

Section 6, when a > 1 and there are exactly two nonzero stable points. This is characterized

exactly in Proposition 3 eq. (6.1) in case (2), visualized in Figure 2. The following discussion

can be applied to the other cases, with the corresponding simplifications.

It is the relation between the stable points (equilibria) and α, β that decides the outcome

of the treatment c, applied to the disease, identified by the parameter a. From the outset,

we see that α < u1 < β, detection will occur too late. When u2 < β, one can never
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regain a satisfactory health level, even after detection. Thus the ideal configuration (6.4)

is u1 < α < β < u2, as seen below.

• Successful treatment. When u1 < α < β < u2, if detection occurs at a state

u ∈ (u1, α), then recovery is achieved as the solution evolves towards u2. Detection occurs

if testing is done at intervals not greater than ∆T = Tα − Tu1 = N ln(u1α ).

• Successful detection, insufficient treatment. Here u1 < α < u2 < β. Detection

is successful but the treatment achieves a state u2 that may be pathological/endemic.

• Ineffective detection, unsuccessful prophylactic treatment. If α < u1 <

β < u2. Detection would be too late, but prophylactic treatment would prevent the dis-

ease/epidemic.

• Non intervention case, follow up. If u1 < u2 < α < β, detection is early and a

follow up is required. No treatment should be necessary.

• Ineffective detection and treatment. If α < u1 < u2 < β, detection is too late

and treatment would be ineffective. The most pessimistic scenario.

• Ineffective detection, successful early treatment. If α < β < u1 < u2, detection

is too late and only early treatment would be effective.

While a modulates the aggressiveness of the disease, making γ smaller, c would push it

up. For a given a, u2 is increasing, and u1 decreasing, in c. In the first application model

introduced before, the action of increasing c is equivalent to improve the treatment. Since

γ(u) is a probability, 0 ≤ c ≤ 1, thus we could improve treatment up to c = 1. It is of

interest to see the optimal values of u1, u2 we can achieve, as shown, for example in case

a > 1, in Proposition 4.

5. Stochastic optimization approach

It is known from [1, 6] that the window of detection ∆T defined in Subsection 4.4 is one

of the most important quantities from a clinical point of view. In the previous discussion,

we looked at the deterministic setting when L→∞ and the limit ut is monotone between

equilibrium points of the phase diagram of (2.7).

We now propose a different approach, where the process (uLt ) is investigated in the

microscopic (moderate frequency) setting, when L < ∞, uLt is random and moves up and

down, albeit in biased fashion. In this section we suppress the superscript L since it is

irrelevant, and remind the reader that ut is random.

The goal is to put in context ∆T . Consider a non-decreasing utility function Q(u),

0 ≤ u ≤ 1, a stopping time τ and the value function, defined for the initial nonrandom

value ū

V (ū) = sup
τ
Eū

[ ∫ ∞
τ

Q(ut)dt
]
.
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Natural choices of Q(u), which we interpret as a quality of life index, should satisfy Q(u) ≤ 0

for 0 < β, Q(u) ≥ 0 for β ≤ u ≤ 1, e.g. Q(u) = 1[β,1](u) as we assume in (4.2) in

the simplest case. Another candidate is Q(u) = ln u
β . This example emphasizes that

limu→0+ Q(u) = −∞. The problem is of practical interest when α < ū < β. In this

interval, we cannot detect the disease but the quality of life index is negative. We are

interested if V (ū) > 0 is possible. Evaluating τ = τ(ū) suggests the relation

∆T ∼ lim
ū↓α

Eū[τ ]

if the window of detection corresponds to the worst-case scenario that would still allow

a positive outcome. A similar model may be formulated when the utility function is the

cost of the treatment, incorporating the cost of testing to counterbalance the benefits of

too early testing; otherwise it may appear beneficial to test with the highest frequency,

provided there is no cost involved.

We finally point to a connection to Shepp’s urn [13], where L. Shepp proved the Chow-

Robbins conjecture (see also [2, 3, 4] later on). Let’s assume the urn under consideration

has Ut lucky marbles and L−Ut unlucky marbles. Drawing the former increases Kt by one

unit, a quantity we shall call the individual’s health capital (see, for example, [10]), while

drawing the latter decreases it by one unit. Somewhat speculatively, Kt should be an index

related, but not equal, to the life expectancy, incorporating quality of life as a weighing

factor. It is reasonable to adopt the value K0 at t = 0 satisfying 0 ≤ K0 ≤ L and a policy

of risk aversion, i.e. Kt ≥ 0 at all times t ≥ 0. If zero is reached, we stop. Let τ0 be the

hitting time of zero. The natural optional stopping problem, generalizing both [13] and [4],

which we shall call the Modified Shepp Urn with Risk Aversion, is to maximize the health

capital looking forward in time, when starting at U = Ū , obtaining the value function

V (K0, Ū) = sup
τ∧τ0

EK0,Ū

[
Kτ

]
.

The modification comes from the fact that the number of marbles is constant, whereas in

the original Shepp’s urn it is done without replacement. In this case, τ in the optimal

stopping aims at maximizing the health capital rather before intervention.

6. The case a > 1

Proposition 3. If γ(u) = cua and a > 1, then the point u0 = 0 is always a stable

equilibrium point in the sense that H(u) < 0 in a positive neighborhood of u0. For any

a > 1 the function f(u) (4.3) has a maximum value at um = 1− 1
a

(6.1) q =
1

a

(
1− 1

a

)a−1

− 1

Nc
.
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Then, the number of equilibrium points in [0, 1] of the dynamical system (2.7) is determined

by the sign of the number q;

(1) if q < 0, the only equilibrium point is u0 = 0.

(2) if q > 0, there are 3 equilibrium points 0 = u0 < u1 < u2 < 1. The points u0 (seen

for u ≥ 0) and u2 are stable, and u1 is unstable and u1 < um < u2.

(3) if q = 0, there are two equilibrium points, namely u0 = 0 and u1 = u2 = um; u0 is

stable, and um is half-stable.

Proof. Part 1. Number of equilibrium points. The function f defined in (4.3) satisfies

f(0) = f(1) = − 1
Nc < 0, thus it has an extreme value in the interval (0, 1). The derivative

of the function f is given by

(6.2) f ′(u) = aua−2

(
a− 1

a
− u
)
,

hence it has a unique zero at the point um = a−1
a on the interval (0, 1). This point is a

global maximum over the interval [0, 1]. Hence the function f , over the same interval, is

less or equal to the value q given by

(6.3) q = f

(
a− 1

a

)
=

1

a

(
1− 1

a

)a−1

− 1

Nc
.

The function f is continuous and it is strictly monotone restricted to the intervals [0, um]

and [um, 1]; then f is injective on each of these intervals. If q < 0, the equation f = 0 has

no solutions. If q = 0, a unique solution is obtained at um, and if q > 0, then there are two

solutions that we denote by 0 < u1 < u2 < 1 (see Section 2).

Part 2. Stability. For the point u0 = 0 we have that H ′(0) = − 1
N < 0, and thus it is

always a stable point.

In the case q > 0, let’s denote these points by u0 = 0, u1, and u2, with u1 < u2 as

before. We notice that u1 ∈ (0, um) and that u2 ∈ (um, 1). Hence, we have from 4.4

that, H ′(u1) = cu1f
′(u1) > 0, and hence u1 is an unstable point. Similarly, we have that

H ′(u2) = cu2f
′(u2) < 0 which means that u2 is a stable point.

In case q = 0, we have that f(um) = f ′(um) = 0. Since f attains global maximum at

um we have that: H(u) = cuf(u) < cuf(um) = 0, ∀u ∈ [0, 1]. Hence, the point um is

half-stable.

�

Proposition 4. (i) The function q = q(a) is decreasing for a ≥ 1 with maximum value at

a = 1 equal to q(1) = 1 − 1
cN , equal to the limiting value of u1 when a ↓ 1 and minimum

value q(∞) = − 1
cN < 0.
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u0

1

u′

u

u′ = H(u)

Figure 1. Phase Portrait case q < 0, obtained by selecting a = 5, N = 10,
c = 1. The unique equilibrium point u0 is stable.

u0 u1 u2

1

u′

u

u′ = H(u)

Figure 2. Phase Portrait case q > 0, obtained by selecting a = 3, N = 10,
c = 1. The equilibrium points u0, u2 are stable, and u1 is unstable.

u0 um

1

u′

u

u′ = H(u)

Figure 3. Phase Portrait case q = 0, obtained by selecting a = 4.2, N = 10,
c = 1. The equilibrium point u0 is stable, and um = u1 = u2 is half-stable.

(ii) If q(1) ≤ 0, then H(u) ≤ 0 and the only equilibrium point is u0 = 0; no recovery is

possible (fig. 1).

(iii) In case q(1) > 0, there exists a critical value a∗ = a∗(cN) equal to the solution of

q(a) = 0, satisfying 1 < a∗ < cN . For a ∈ (1, a∗) the system is in case (2) of Proposition

3 (fig. 2), reaching case (3) for a = a∗ (fig. 3). For a > a∗ we are in case (1).
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(iv) Additionally, for fixed N > 1 and a ∈ (1, a∗(N)), there exists a value c0 such that

a ∈ (1, a∗(cN)) when c ∈ (c0, 1] and letting the treatment intensity c ↑ 1, the values of

ui(c), i = 1, 2, seen as functions of c satisfy u1 ↓ u1(1) and u2 ↑ u2(1). The successful

treatment window exists at c = 1, most efficient treatment, if the double inequality

(6.4) 0 ≤ u1(1) ≤ α < β ≤ u2(1) < 1

is satisfied.

Remark. The restriction that c ≤ 1 is intrinsic to the power law model γ(u) = cua,

a ≥ 0, since γ(UL ) must be a probability, before scaling. In principle, it appears meaningful

to have monotonicity in c (increasing) for γ, and other models may be considered, including

γ(u) = cua ∧ 1 or a consistent mollification.

Proof. The function a → q(a) will be decreasing if and only if the function a → p(a) =
1
a

(
1− 1

a

)(a−1)
is decreasing since q is a translation of p. An elementary calculation shows

that the derivative of p is negative when a > 1. In detail,

ln(p(a)) = − ln(a) + (a− 1) (ln(a− 1)− ln(a)) ,
d

da
ln(p(a)) = ln

(
1− 1

a

)
< 0 .

With this in mind, it is imemdiate that (i), (ii) and (iii) hold. The inequality a∗ < cN

is necessary because in the formula of q(a) the factor (1 − 1
a)a−1 < 1. To prove (iv),

note that now N > 0 and a ∈ (1, a∗(N)) are fixed. From the analysis of the function

a→ p(a), we see that c→ a∗(cN) is increasing, as follows. The larger c is, 1/cN is smaller

and so, knowing that a → p(a) is decreasing, p(a∗) = 1
cN implies a∗(cN) is larger. Now,

we see that for a ∈ (1, a∗(N)), there exists a value c0 such that a ∈ (1, a∗(cN)) when

c ∈ (c0, 1]. To conclude (iv), we have to prove the dependence of ui = ui(c), i = 1, 2

using the implicit function theorem in f(u) = 0, or equivalently, ua−1(1 − u) = 1
cN . Put

B(u) = (a− 1) lnu+ ln(1− u) = − lnN − ln c. Since

(
∂B

∂u
)(
∂u

∂c
) = −1

c
< 0

we only have to show that

(6.5)
∂B(u1)

∂u
> 0 and

∂B(u2)

∂u
< 0

to prove the monotonicity of ui(c) in the variable c, i = 1, 2. But u → B(u) is strictly

concave, hence u → B′(u) is decreasing. It has values B′(0+) = +∞ and B(1−) = −∞.

We know that B(u1) = B(u2) so the only zero of B′(u) is in between u1 and u2. This proves

(6.5). The claim (6.4) reflects the discussion in Subsection 4.7, first bullet sign, Successful

treatment. For given 0 < α < β < 1 we need to verify that there exists c ∈ [0, 1] such that
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u1(c) < α < β < u2(c). We just proved that the smallest u1(c) and the largest u2(c) are

achieved at c = 1. �

7. Case a ∈ (0, 1]

7.1. The case a = 1. We start analyzing the case a = 1. The following proposition is the

continuous version discussed in [9]. We note that now q(1) = 1− 1
Nc .

Proposition 5. Under the conditions of Theorem 1, if a = 1, equivalently γ = cu, then

u(t) solves the standard logistic equation

(7.1)
du

dt
= cu(u2 − u) , u(0) = ū .

with carrying capacity u2 = q(1). For q(1) ≤ 0 the solution converges to zero, and for

q(1) > 0, the solution converges to the unique nonzero stable stationary state u2. There is

no unstable equilibrium u1.

Proof. The classical solution of the logistic equation (see Section 1.2 in [8])

(7.2) u(t) = u2

(
1 + (

u2

ū
− 1)e−cu2t

)−1
, ū 6= 0

and u(t) ≡ 0 when ū = 0, proves the results, considering that the initial value ū ∈ [0, 1] by

construction. �

7.2. The case a ∈ (0, 1).

Proposition 6. If γ(u) = cua, 0 < a < 1, then there are exactly two equilibrium points

u0 = 0, and u2 in (0, 1) of the dynamical system 2.7. The point u0 is unstable, and u2 is

stable (fig. 4).

u0 um

(1,0)

u′

u

u′ = H(u)

Figure 4. Phase Portrait obtained by selecting a = 1
2 , N = 10, c = 1. The

equilibrium point u0 is unstable, and um = u2 is stable. Note that um is
defined in Proposition 3, part (3).
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Proof. Part 1. Number of equilibrium points. As before u0 = 0 is an equilibrium point.

Let u > 0, we have that limu→0+ f(u) = +∞ and f(1) = − 1
Nc . The continuity of f on

(0, 1] guarantees that f = 0 has a solution on the same interval. Thus, we will have at least

one more equilibrium point on (0, 1).

To determine the precise number of solutions we recall that f ′(u) = aua−2
(
a−1
a − u

)
.

Since a < 1, then f ′(u) < 0, thus f ′ is strictly decreasing and therefore f injective. Hence,

we obtain only one equilibrium point u2 in (0, 1) (see Section 1).

Part 2. Stability. For the point u0 = 0 we notice that, since limu→0+ f(u) = +∞, then

for points greater but close enough to zero the expression H(u) = cuf(u) is positive. We

conclude then that u0 = 0 is unstable in this case.

For the analysis of the point u2 we begin by noticing that since f ′ < 0, then in particular

f ′(u2) < 0. Thus, H ′(u2) = cu2f
′(u2) < 0, so u2 is a stable point. �
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